Illumine-i Partners with Raiven.

It’s official! Illumine-i has now been enlisted as one of the suppliers of Raiven, a leading online purchasing platform that helps EPC businesses source and procure smarter.

Raiven was formerly the supply chain division of Q-merit – the nationwide leader in EV charging station installations. In 2020, the division spun off as an independent enterprise, assuming the name Raiven. The Raiven marketplace is an intuitive and user-friendly purchasing platform that brings suppliers and contractors under one roof.

The breakthrough deal is set to benefit both the parties involved, with Raiven getting to add a leading design engineering service provider to its growing list of suppliers and Illumine-i getting to leverage Raiven’s huge network of contractors, thus catering its services to a wider market.

Frequently Asked Questions

1. What is solar curtailment in Australia?

Solar curtailment occurs when generators are required to reduce output due to grid constraints, despite available solar resource. In the National Electricity Market, this is typically driven by congestion, voltage limits, and system security requirements set by Australian Energy Market Operator.

2. Why is solar curtailment increasing in the NEM?

Renewable capacity is growing faster than transmission infrastructure. Many regional networks were designed to serve demand, not export generation, creating bottlenecks as new solar connects.

3. Can battery storage reduce solar curtailment?

Yes, but only when properly designed. Co-located BESS can reduce curtailment by absorbing excess generation and reshaping exports, provided it is engineered around local network constraints rather than generic assumptions.

4. What is Hybrid Energy Yield Assessment (Hybrid EYA)?

Hybrid EYA models solar, battery storage, load, and grid constraints as a single integrated system. It captures real-time interactions that conventional, sequential energy modelling misses.

5. Which regions in Australia experience the highest curtailment?

Curtailment is most severe in constrained regional zones, particularly western New South Wales, north-west Victoria, and parts of South Australia, where congestion and voltage limits are already binding.

6. How can battery charging contribute to curtailment?

During peak solar periods, high battery charging can increase local voltage, reducing allowable export capacity. If the battery fills too early, it may be unavailable when curtailment risk is highest.

7. What is the difference between structural and recoverable curtailment?

Structural curtailment is driven by persistent transmission limits and requires network upgrades. Recoverable curtailment arises from operational constraints and can often be mitigated through storage design and control strategy.

8. How accurate is Hybrid EYA compared to traditional modelling?

Hybrid EYA provides materially higher accuracy in constrained networks by explicitly modelling voltage limits, export constraints, and battery state-of-charge dynamics that standard yield assessments ignore.

9. When should Hybrid EYA be used?

Hybrid EYA is essential when export limits are below peak generation, networks are voltage-constrained, or battery sizing and control materially affect curtailment and revenue.

10. Will transmission upgrades eliminate curtailment in Australia?

Transmission upgrades will help in the medium term, but they won’t arrive fast enough for projects being developed today. Curtailment risk must be managed through intelligent system design in the interim.